Measurement of W mass and width at OPAL: the journey from within

PilcherFest, 22nd Sept 2012 Kersten Physics Teaching Center University of Chicago

- From Europe to Chicago and back
- Francesco meet OPAL
- W mass: the works (2000-2004)
- Memories and lessons: images of the mind
- Coming back to where we began

From November 1999...

My first trip to Chicago and UofCMeet Jim Pllcher, Mel Shochet..

Kersten Phys Teaching Center

Internationl House

fracesco.spano@cern.ch

W mass and width @ OPAL: the journey

.. to April 2000

 Join OPAL/ATLAS with Jim Pilcher as advisor.

High energy Physics

 ...moving to Hyde Park, start courses, setting down..

You should go to CERNY ...

- End of Spring quarter 2000: Jim suggests to go to CERN to make a decision on thesis project.
 - Francesco, meet

- Attend OPAL week, talk to phys coordinator, talk to Chicago people resident at CERN
- Mature experiment with large available data set, still more to come (maybe even some more data taking at WW production threshold..)

One outsanding topic: W mass and width measurement

- Impressive and fascinating task: perform measurement using full data set collected by OPAL extending it from data collected @ √s=189 GeV
- Chicago has leading role and one Ph.D. candidate is completing her thesis on that topic (...who might that be:-))
 <u>francesco.spano@cern.ch</u> Top Quark production @ LHC BSM4LHC 3

Why W Boson(s)?

 W^+ and W^- : SM mediators of weak interactions

Existence confirms (with Z^0) Standard Model SU(2)xU(1) gauge symmetry

Are massive: related to SM EWK symmetry breaking \rightarrow Higgs

 M_{w} and $\ensuremath{\, \Gamma}_{w}$ are key parameters of SM

Precise and unbiased measurement by direct production

Stringent test of SM, constraints on SM Higgs Boson mass and on physics beyond SM

) The Omni Purpose Apparatus at LEP

- Onion-like detector covering 99% of solid angle with
 - Em. Res = $5/6\%/\sqrt{E+0.2\%}$
 - Had. Res: ~100-120%/ \sqrt{E}
 - σ(p)/p²=1.25·10⁻³ GeV⁻¹
 (for 45 GeV muons)

LEP

- e⁺e⁻ collider at E_{cm}~ 160-209 GeV
- Peak lumi: ~0.5-1 ·10³² cm⁻² s⁻¹
- Bunch crossing frequency~45 KHz

WW rate ~0.8-1.6 10⁻³ Hz

fracesco.spano@cern.ch

W mass and width @ OPAL: the journey

Silicon tungsten luminometer

fracesco.spano@cern.ch

W mass and width @ OPAL: the journey

PilcherFest, 22nd Sept, The University of Chicago

Event selection

Total OPAL JLdt ~ 680 pb⁻¹ (1997-2000) in E_{cm} ~ 172-209 GeV ~ 10 pb⁻¹ @ E_{cm} ~ 161 GeV

~11K WW

Widest det acceptance

Complex multi-steps event selection (cut based preselections, likelihood discriminants) for efficient

and clean identification

Performance

Chan	Efficiency	Purity	Expected	Selected
qqlv	81%	86%	4836	4822
qqqq	86%	79%	5831	5893

IvIv: two neutrinos \rightarrow little mass information \rightarrow separate analysis

fracesco.spano@cern.ch

The strategy @ OPAL

• Three main steps

- Reconstruction: build final state 4f 4momenta from measured tracks and clusters
- Kinematic fitting: precise beam energy knowledge to constrain total four momentum → improves mass resolution
- Mass and width extraction: likelihood
- Three mass extraction methods: Convolution, Reweighting, Breit-Wigner

- Small differences at reconstruction and kinematic fitting level
- Clear difference in likelihood building

Definitions

- In qqqq: 4-mom. conservation (4C
 fit). 4C+ equal mass for Ws (5Cfit)
- In qql_v : neutrino $\rightarrow \frac{1C}{2C}$ fit

Taking it from Robin's solid foundation..

Doug Glezinski

Res. Associate

- Robin's thesis was OPAL main measurement @ √s =189 GeV
 Dote Set:180 GeV data set ∫ dt
 - Data Set:189 GeV data set ∫Ldt = / 183 pb⁻¹
 - Reco: separate kine fit and jets-to-W lkl pairing for 4 & 5 jets events
 - M_W, Γ_W: 1 dim. Reweighting:binned Ikl scan by re-weighting MC shape for varying (M_W, Γ_W), least biased, fully exploit MC reco

..towards a new approach

DataSet: Extend to full data set (680 pb⁻¹, ~11K W pairs)

Reco & kine : fully had: fit as 5jets, merge jets to 4, new lkl for comb bkg handling (matrix el + reco quantities)

M_W, Γ_W : **2d/3d Reweghting**⁴: spread bkg (4j) + more weight to better resolution (qqlv) new flexible binning: enough ev/bin avoid biases

Full analysis of all syst.uncertainties: new data driven (LEP-wide) strategy + Final combination

fracesco.spano@cern.ch

Robin Coxe

Ph.D. Candidate

W mass and width @ OPAL: the journey

fracesco.spano@cern.ch

W mass and width @ OPAL: the journey

12

PilcherFest, 22nd Sept, The University of Chicago

Event reconstruction in qqqq channel

Force event into

 5jets to account for additional gluon jet /4jets or 5jets depending on jet res par (5j~23%) (Durham)

Event reconstruction in qqqq channel (cont)

Assign jets to Ws with different algorithms

- Reweighting and Breit Wigner: choose one assignment with
 - CCO3 matrix element and multivariate discriminant (different treatement for standard and p_{cut}) (RW)
 - Kinematic fit probability for 4j , multivariate discriminant for 5j (BW)
- Convolution : use all assignment. Neural Network to give weight to each assignment

Reweighting

- Basic idea: likelihood from MC distribution of (M_W, Γ_W) sensitive variables for signal and bkg. (M_W, Γ_W) lkl. scan performed by reweighting signal MC sample for varying W mass and width hypothesis
- Distributions use multi dimensional binning to spread bkg (mainly qqqq), give more weight to events with better resolution (mainly qqlv)
 - qqev/qqµv: 3D grid (2C mass,error on
 - 2C mass,1C had mass),
 - qqtv: 2D grid (analytic mass and its error)
 - qqqq: 3D grid (5C mass,error on 5C mass,difference between 4C masses)
- Reweighting function is product of Breit-Wigners
- Binned likelihood fit

fracesco.spano@cern.ch

- No external bias correction needed
- Fully exploit MC power

Systematics and combination, the long and winding road

solid connections with the OPAL "family" established
maximize "in house"
coherence/activity (FS + AG)

Time to be back: FS in Chicago at beginning 2002

2002-2003: a long effort on systematics

- Ultimately four "core" groups are left
 - Chicago (RW), CERN (Convolution), Cambridge (BW), Munich (Convolution measuring width)
- Detailed studies : show RW can ride the tide
 - In final state interactions LEP wide studies: de-sensitize analysis in fully had channel + data driven limits. → update jet pairing + higher dim RW
 - hadronization: different baryon-kaon content in data/MC
 - higher order corrections: include WW data driven limit and more..

W mass and width extraction

- For each event in a data set, build likelihood to have a certain value (be in a certain bin) of one (or more) (M_W, Γ_W) sensitive variables for signal and bkg
- Produce likelihood for each data set and maximize it as a function of $M_W, \Gamma_W \rightarrow$ determine M_W, Γ_W and uncertainties

Two types of fits are performed (consistent results):

- Two parameter fit: (M_W, Γ_W) are independent parameters
- One Parameter fit: fit for $M_W(\Gamma_W \text{ fixed to the SM relation }:\Gamma_W \propto M_W^3)$, fit for $\Gamma_W(M_W \text{ set to 80.33 GeV})$
- Check/correct for bias (Monte Carlo) and expected errors (pulls)
- Evaluate syst. uncertainties

fracesco.spano@cern.ch

W mass and width extraction (cont)

- Results (years/channels) combined by generalized least-square minimization taking into account correlations and systematic uncertainties
- Strongly correlated methods (65% to 88%) \rightarrow small stat. gain in combination (~2% decrease in δM_W^{stat}) \rightarrow Use CV for central values: best expected statistical uncertainty on M_W

Use

- final LEP beam energy uncertainty and correlation matrix
- M_W p_{cut} analysis to get significant reduction in FSI syst. and improvement of total uncertainty

fracesco.spano@cern.ch

W mass and width @ OPAL: the journey

PilcherFest, 22nd Sept, The University of Chicago

19

Uncertainties on M_W

•Use final LEP beam	Source	Error on M _W (MeV)		
and correlation		qqlv	qqqq (p _{cut})	qqqq
matrix	Higher Order Corr.	11	9	9
	Hadronisation	14	20	6
• M _W P _{cut} analysis	Detector Syst.	20	10	10
→significant	LEP Beam Energy	8	10	10
syst→aaaa weight in	Colour Reconnection	-	41	125
combination: from	Bose-Einstein Correlations	_	19	35
10% to 34%	Other	5	26	20
(If no FSI, comb.	Total Systematic	28 (<mark>22</mark> ,29)	<mark>58 (56</mark> ,56)	133
42 MeV→use most	Statistical	56 (58,64)	<mark>60 (64</mark> ,73)	51
of qqqq stat power)	Overall	63 (62,70)	83 (85,92)	142

In parenthesis: RW and BW summary values

Detailed discussion uses CV values - RW and BW are consistent

fracesco.spano@cern.ch

W mass and width @ OPAL: the journey

PilcherFest, 22nd Sept, The University of Chicago

Uncertainties on $\Gamma_{\rm W}$

Source	Error on M _W (MeV)		
	qqlv	qqqq	
Higher Order Corr.	11	10	
Hadronisation	77	68	
Detector Syst.	29	6	
LEP Beam Energy	3	2	
Colour Reconnection	-	151	
Bose-Einstein Correlations	-	32	
Other	25	54	
Total Systematic	91 (<mark>85</mark>)	177 (180)	
Statistical	135 (<mark>131</mark>)	112 (130)	
Overall	163(156)	209 (222)	

In parenthesis: RW summary values. BW does not measure the width Detailed discussion uses CV values - RW is consistent

fracesco.spano@cern.ch

W mass and width @ OPAL: the journey

PilcherFest, 22nd Sept, The University of Chicago 21

OPAL Results

Mw CV RW	$M_{W} \pm \delta M_{W}^{stat} \pm \delta M_{W}^{syst} (GeV)$ $N_{W} = 80.416 \pm 0.042 \pm 0.032$ $R_{W} = 80.405 \pm 0.044 \pm 0.028$		Previous published result (√s=161-189 GeV) M _W = 80.432 ± 0.066(stat) ± 0.045 (syst) Γ _W =2.04 ± 0.16 (stat) ± 0.09	
BW	80.390 ± 0.048	± 0.03	2	(syst)
Fir	nal OPAL results	Γ _W CV RW	Γ _w	$ \pm \delta \Gamma_W^{stat} \pm \delta \Gamma_W^{syst} (GeV) 1.996 \pm 0.096 \pm 0.102 113 \pm 0.101 \pm 0.097 $
Combining Inly and threshold measurement M_W = 80.415 ± 0.042 (stat) ± 0.030 (syst) ± 0.009 (E _{beam}) Γ_W =1.996 ± 0.096 (stat) ±0.102 (syst) ± 0.003 (E _{beam})				

fracesco.spano@cern.ch

W mass and width @ OPAL: the journey

Done!

You do not finish a thesis. You abandon it. (K. Anderson) Eur. Phys. J. C 45, 307–335 (2006) Digital Object Identifier (DOI) 10.1140/epjc/s2005-02440-5

Eur. Phys. J. C 45, 307–335 (2006)

THE EUROPEAN PHYSICAL JOURNAL C

hep-ex/0508060

Measurement of the mass and width of the W boson

The OPAL Collaboration

G. Abbiendi², C. Ainsley⁵, P.F. Åkesson^{3,y}, G. Alexander²², G. Anagnostou¹, K.J. Anderson⁹, S. Asai²³, D. Axen²⁷, I. Bailey²⁶, E. Barberio^{8,p}, T. Barillari³², R.J. Barlow¹⁶, R.J. Batley⁵, P. Bechtle²⁵, T. Behnke²⁵, K.W. Bell²⁰, P.J. Bell¹, G. Bella²², A. Bellerive⁶, G. Benelli⁴, S. Bethke³², O. Biebel³¹, O. Boeriu¹⁰, P. Bock¹¹, M. Boutemeur³¹, S. Braibant², R.M. Brown²⁰, H.J. Burckhart⁸, S. Campana⁴, P. Capiluppi², R.K. Carnegie⁶, A.A. Carter¹³, J.R. Carter⁵, C.Y. Chang¹⁷, D.G. Charlton¹, C. Ciocca², A. Csilling²⁹, M. Cuffiani², S. Dado²¹, A. De Roeck⁸, E.A. De Wolf^{8,s}, K. Desch²⁵, B. Dienes³⁰, J. Dubbert³¹, E. Duchovni²⁴, G. Duckeck³¹, I.P. Duerdoth¹⁶, E. Etzion²², F. Fabbri², P. Ferrari⁸, F. Fiedler³¹, I. Fleck¹⁰, M. Ford¹⁶, A. Frey⁸, P. Gagnon¹², J.W. Gary⁴, C. Geich-Gimbel³, G. Giacomelli², P. Giacomelli², M. Giunta⁴, J. Goldberg²¹, E. Gross²⁴, J. Grunhaus²², M. Gruwé⁸, P.O. Günther³, A. Gupta⁹, C. Hajdu²⁹, M. Hamann²⁵, G.G. Hanson⁴, A. Harel²¹, M. Hauschild⁸, C.M. Hawkes¹, R. Hawkings⁸, R.J. Hemingway⁶, G. Herten¹⁰, R.D. Heuer²⁵, J.C. Hill⁵, D. Horváth^{29,c}, P. Igo-Kemenes¹¹, K. Ishii²³, H. Jeremie¹⁸, P. Jovanovic¹, T.R. Junk^{6,i}, J. Kanzaki^{23,u}, D. Karlen²⁶, K. Kawagoe²³, T. Kawamoto²³ R.K. Keeler²⁶, R.G. Kellogg¹⁷, B.W. Kennedy²⁰, S. Kluth³², T. Kobayashi²³, M. Kobel³, S. Komamiya²³, T. Krämer²⁵, A. Krasznahorkay^{30,e}, P. Krieger^{6,l}, J. von Krogh¹¹, T. Kuhl²⁵, M. Kupper²⁴, G.D. Lafferty¹⁶, H. Landsman²¹, D. Lanske¹⁴, D. Lellouch²⁴, J. Letts^o, L. Levinson²⁴, J. Lillich¹⁰, S.L. Lloyd¹³, F.K. Loebinger¹⁶, J. Lu^{27,w}, D. Lanske^{*}, D. Lehouch^{*}, J. Letts, L. Levinson^{*}, J. Linch^{*}, S.L. Lioyd^{*}, F.K. Loconger^{*}, J. Lu^{*},
A. Ludwig³, J. Ludwig¹⁰, W. Mader^{3,b}, S. Marcellini², A.J. Martin¹³, T. Mashimo²³, P. Mättig^m, J. McKenna²⁷,
R.A. McPherson²⁶, F. Meijers⁸, W. Menges²⁵, F.S. Merritt⁹, H. Mes^{6,a}, N. Meyer²⁵, A. Michelini², S. Mihara²³,
G. Mikenberg²⁴, D.J. Miller¹⁵, W. Mohr¹⁰, T. Mori²³, A. Mutter¹⁰, K. Nagai¹³, I. Nakamura^{23,v}, H. Nanjo²³,
H.A. Neal³³, R. Nisius³², S.W. O'Neale^{1,*}, A. Oh⁸, M.J. Oreglia⁹, S. Orito^{23,*}, C. Pahl³², G. Pásztor^{4,g}, J.R. Pater¹⁶, J.E. Pilcher⁹, J. Pinfold²⁸, D.E. Plane⁸, O. Pooth¹⁴, M. Przybycień^{8,n}, A. Quadt³, K. Rabbertz^{8,r}, C. Rembser⁸, P. Renkel²⁴, J.M. Roney²⁶, A.M. Rossi², Y. Rozen²¹, K. Runge¹⁰, K. Sachs⁶, T. Saeki²³, E.K.G. Sarkisyan^{8,j}, A.D. Schaile³¹, O. Schaile³¹, P. Scharff-Hansen⁸, J. Schieck³², T. Schörner-Sadenius^{8,z}, M. Schröder⁸, M. Schumacher³, R. Seuster^{14,f}, T.G. Shears^{8,h}, B.C. Shen⁴, P. Sherwood¹⁵, A. Skuja¹⁷, A.M. Smith⁸, R. Sobie²⁶, S. Söldner-Rembold¹⁶,
F. Spano^{9,y}, A. Stahl^{3,x}, D. Strom¹⁹, R. Ströhmer³¹, S. Tarem²¹, M. Tasevsky^{8,d}, R. Teuscher⁹, M.A. Thomson⁵,
E. Torrence¹⁹, D. Toya²³, P. Tran⁴, I. Trigger⁸, Z. Trócsányi^{30,e}, E. Tsur²², M.F. Turner-Watson¹, I. Ueda²³, B. Ujvári^{30,e}, C.F. Vollmer³¹, P. Vannerem¹⁰, R. Vértesi^{30,e}, M. Verzocchi¹⁷, H. Voss^{8,q}, J. Vossebeld^{8,h}, C.P. Ward⁵ D.R. Ward⁵, P.M. Watkins¹, A.T. Watson¹, N.K. Watson¹, P.S. Wells⁸, T. Wengler⁸, N. Wermes³, G.W. Wilson^{16,k} J.A. Wilson¹, G. Wolf²⁴, T.R. Wyatt¹⁶, S. Yamashita²³, D. Zer-Zion⁴, L. Zivkovic²⁴

- ¹ School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK
- ² Dipartimento di Fisica dell' Università di Bologna and INFN, 40126 Bologna, Italy
- ³ Physikalisches Institut, Universität Bonn, 53115 Bonn, Germany
- $^4\,$ Department of Physics, University of California, Riverside CA 92521, USA
- ⁵ Cavendish Laboratory, Cambridge CB3 0HE, UK
- ⁶ Ottawa-Carleton Institute for Physics, Department of Physics, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- ⁸ CERN, European Organisation for Nuclear Research, 1211 Geneva 23, Switzerland
- ⁹ Enrico Fermi Institute and Department of Physics, University of Chicago, Chicago IL 60637, USA
- ¹⁰ Fakultät für Physik, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
- ¹¹ Physikalisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
- ¹² Indiana University, Department of Physics, Bloomington IN 47405, USA
- ¹³ Queen Mary and Westfield College, University of London, London E1 4NS, UK
- ¹⁴ Technische Hochschule Aachen, III Physikalisches Institut, Sommerfeldstrasse 26–28, 52056 Aachen, Germany
- ¹⁵ University College London, London WC1E 6BT, UK
- ¹⁶ Department of Physics, Schuster Laboratory, The University, Manchester M13 9PL, UK
- ¹⁷ Department of Physics, University of Maryland, College Park, MD 20742, USA
- ¹⁸ Laboratoire de Physique Nucléaire, Université de Montréal, Montréal, Québec H3C 3J7, Canada
- ¹⁹ University of Oregon, Department of Physics, Eugene OR 97403, USA
- ²⁰ CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, UK
- ²¹ Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel

²² Department of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel

MAY 2012

80400

M_w [MeV]

80200

Some personal recollections(I) images

Jim suggesting to move on from hadronization studies ...

• Jim making time to talk to me in his HEP office..

 Jim arriving by bike on a Saturday sunny afternoon to carry a corrected copy of my thesis to my apartment..

> Jim and Carla inviting me to a reception at their house at a very close time to my handing in my thesis ..

Some personal recollections (II) Making it possible: the Chicago way

Solid advise at the right moment

• A strongly supportive environment at "home" (ATLAS/OPAL group, HEP) in the collaboration ("OPAL")

In nurture independence, while providing tools

tools for analysis

Participation in meetings, conferences, being there where the action is

- Concreteness and constructive approach
- Group work
- Solid, careful analysis work
- Asking the (deep) questions
- Independence & trust
- Teaching by example

Coming back to where we began

Still I cannot say it better than in 2004

The first person to acknowledge is my adviser James E. Pilcher. I have been privileged to collaborate with him over these four years and to learn from him. My respect and appreciation goes to both the scientist and the man. I benefited from his insight in physics, from the guidance which led me to face all problems and difficulties, also beyond physics. I was advised and supported while I was given the space to grow and make my own decisions. I do hope to be able to collaborate with him again.

THANK YOU JIM !!!

fracesco.spano@cern.ch

W mass and width @ OPAL: the journey

Back up

Jets & metrics

• in Jet clustering combine object i and j with smallest d(i,j)

• Jade

$$y_{ij} = \frac{2E_i E_j (1 - \cos \theta_{ij})}{s} = \frac{M_{ij}^2}{s}$$
center of mass energy

improper for soft gluons emitted close in angle to high en quarks

• Durham
$$(M_T^2)_{ij} = 2\min(E_i^2, E_j^2)(1 - \cos\theta_{ij})$$

(KT) $y_{Dij} = \frac{(M_T^2)_{ij}}{s}$

minimum kt of soft particle w.r.t. hard one in the small angle limit

W masses

√s=172-207 GeV

fracesco.spano@cern.ch

Event reconstruction

	∧	CV	BW
 Rec. 5 jets: 2 "closer" je >reduce co bkg Standard ^m 	4C fit+ merge ets : 4jets mbinatorial b. witt	 Rec. 5 jets : 4C fit+ energy ordering (using 4 jet) Discard 3 improb. combinations (W made from one split 	 Rec. 5jets: choose assignment with highest pairing likelihood >thr M_W diff in 4C fit Largest inter-jet
 highest <i>CCO3</i> <i>Matrix El</i> If sum of di-jet angles is smallest, 	P _{cut} • Highest Ikl discr value - CC03 Matrix El, -4C mass diff. - sum of di-jet	jet+ large energy imbalance) • Evaluate 7 Mass differences by Neural Network: values from 0 (bkg) to 1 (signal). • Keep all comb with	 opening angle in 3- jet system Cosθ of 3-jet system 4jets: choose assign, with highest 5C kin fit prob P(1) >P_{t(h}(+ 2nd highest P
choose second- highest CEANEEecranoinar	angles Ass W mas	NN/value>threshold (most often 3 or 4) ign jets to Ws ss and width @ OPAL	P _{thr} varies for standard and p _{cut} analysis

Breit-Wigner

- Basic idea: Likelihood from empirical analytic function: asymmetric BW+ Background term (parameterize from MC)
 E (c) ggln BN
- qqqq: BW→BW·Gaussian centred at m_w→better description of 5C mass shape
- Unbinned fit to mass distribution: 2C mass for qqlv and 5C mass for qqqq
- Derive bias corrections from MC

CERN EP Seminar

W mass and width @ OPAL

Robust and transparent cross-check

• Unbinned likelihood fit CERN EP Seminar W mass

W mass and width @ OPAL

Combination : the example of M_W

 \cdot M_W is a linear combination of the results from fits to separate data sets

$$y^* = \sum_i y_i W_i$$
 with $\sigma^2(y^*) = \sum_i (\sigma_i)^2$

•Weights and errors \leftarrow y* must be unbiased and have minimum variance

$$w_{i} = \frac{\sum_{k} (E^{-1})_{ik}}{\sum_{i} \sum_{k} (E^{-1})_{ik}} (\sigma^{l})^{2} = \sum_{i} \sum_{k} w_{i} w_{k} \sigma^{li} \sigma^{lk} \rho^{lik}$$

•E is covariance matrix with stat., syst. errors (k) and correlations ρ E is 9x9 (\sqrt{s} comb) or 18x18 (\sqrt{s} and chan. comb)

•Equivalent to minimizing $S = \sum_{i} \sum_{k} (y^* - y_i) (y^* - y_k) (E^{-1})_{ik}$ where S_{min} is distributed as a χ^2 with n-1 degrees of treedom

CERN EP Seminar

W mass and width @ OPAL

CERN EP Seminar

W mass and width @ OPAL

LEP Beam Energy

Kinematic fit: energy scale from $E_{beam} \longrightarrow \delta M_W / M_W \sim \delta E_{beam} / E_{beam}$ E_{beam} ($\sqrt{s} = 2E_{beam}$) measured by LEP (directly): average over Experiments (indirectly): from 3 different check methods to reduce syst. uncertanties physics events All results: consistent Uncertainty for each data set (from LEP): $\delta E_{beam} = 10 \text{ to } 20 \text{ MeV}$ correlation matrix used in M_W and Γ_W combination Obtain shift as "use kin fit($E_{beam} + \delta E_{beam}$)" - "use kin fit (E_{beam})" \rightarrow $\delta M_W = 9 \text{ MeV}, \delta \Gamma_W = 3 \text{ MeV}$

CERN EP Seminar

W mass and width @ OPAL

Detector Modelling

Direct reconstruction is sensitive to detector modelling \rightarrow

Use samples of $e^+e^- \rightarrow Z^0$ @Ecm=91.2 (taken year-by-year $\int Ldt \sim 13 \text{ pb}^{-1}$ for inst. ~400k Z \rightarrow had) to calibrate energy scale, resolution and linearity, angular scale and resolution for leptons and

jets, mass scale for jets

CERN EP Seminar

W mass and width @ OPAL

Dominant effects •For M_W : jet mass and lepton en scale (qqlv)/jet angular bias (qqqq) •For Γ_W jet and lepton en.res r Spano

Higher Order Corrections

Incomplete description of EWK corrections \rightarrow imperfection in probability shape $\rightarrow \delta M_w, \delta \Gamma_W$

- KoralW (Monte Carlo generator for $e^+e^- \rightarrow 4f$) used in the analysis
- Cross check with Kandy (KoralW and YFSWW): improved treatment of photon radiation and photon exchange between Ws

Syst. shifts estimated with KandY : switch on-off improved corrections w.r.t. KoralW and sum in quadrature. (Use OPAL $\sigma(WW\gamma)$ to constrain shift from photon radiation effects) $\delta M_W = 10 \text{ MeV}$ $\delta \Gamma_W = 11 \text{ MeV}$ CERN EP Seminar W mass and width @ OPAL F Spanò

Hadronization

Quark \rightarrow hadrons: not understood mechanism \rightarrow modelling $\rightarrow \delta M_W$, $\delta \Gamma_W$

Use hadronisation models tuned at Z⁰ JETSET (JT): Lund string model HERWIG (HW): singlet cluster model

Different baryon and kaon rates in models explain part of $\delta M_W \rightarrow$ re-weight other MC to JT (def.)

> JT baryon/kaon rates different from PDG \rightarrow apply correction to $M_{W_{i}}$

Residual Largest shift (model – JT): genuine had.

Syst: error on JT corr.

 δM_w = (genuine had err) \oplus (error on JT corr) = 16 MeV

 $\delta\Gamma_W$ = largest shift (model -JT) (b/k rates not useful) =74 MeV

CERN EP Seminar

W mass and width @ OPAL

Final State Interactions

- $1/\Gamma_W \sim 0.1 \text{ fm} \ll |_{had} \sim 1 \text{ fm} \rightarrow two (colour singlet) with significant space-time overlap <math>\rightarrow possible$ interaction of final products
- /Effect not simulated in Monte Carlo— possible mass/

width bias only in qqqq channel

Colour Reconnection

 Colour cross-talk between Ws: bias in qqqq but

not qqlv .

Bose-Einstein Corrrelations

 QM interference → Momentum space correlation of bosons pairs from different W (inter-W) decays: bias
 agag only
 Established in Z⁰ decays

F Spanò

CERN EP Seminar

W mass and width @ OPAL

) Colour Reconnection $\delta M_W, \delta \Gamma_W = largest (CR - no CR) shift in different models$

Sjostrand-Khoze models	Model	δM_W^{4q} (MeV)	δΓ _W ^{4q} (MeV)
(I,II,II): Variable CR	Herwig	40	27
HFRWIG	Ariadne	66	128
ARIADNE	SKI(p _{rec} =58%)	125	150
	$p_{rec} = C$	R probability «	← CR strength
Particle Flow technique			
Measure ratio of	OPAL PF and	IYSIS SETS	Final step
particle densities in	CD strongth	r limit on	Desensitize
intra- and inter- W	- CK Strengtr	% > Dete	→ analysis to
planes : sensitive to CR	model (p _{rec} 50		CR effects
q_{11} W_1 q_{11} W_1	Driven of W an	nd om _w for	
Intra-W	Inter-W		
$q_{21} W_2 q q_{21} W_2$	922		
CERN EP Seminar W mass and width @ OPAL			Spanò

Colour Reconnection (cont)

mas

CR affects mostly soft particles between jets ⇒ changes jet direction Re-calculate jet dir. from particles:

- 1. with momentum P larger than $P_{\rm thr}$
- 2. by weighted momentum vector
 sum (weight = |P|^k)
- 3. within cone of radius R

Use P_{thr}=2.5 GeV for M_w only (best stat-

syst compr). Standard analysis is best

 $M_w(p_{2.5})$ - $M_w(\kappa_{-0.5})$ is sensitive to^{Prec} $CR \rightarrow$ measure in data \rightarrow combine with particle flow : Combined 68%CL upper limit on CR strength in SKI (p_{rec} < 58%) δM_{W}^{CR} : 125 \rightarrow 41 MeV δM_W^{stat} : 51 \rightarrow 60 MeV Total δM_W improves: 142 MeV \rightarrow 83 MeV $\delta \Gamma_W^{CR} = 151 \text{ MeV}$ r Spano

Use OPAL 10 limit on FoM : take 0.77 of the shifts in M_w and $\Gamma_W \rightarrow \delta M_W \sim 35 \text{ MeV}$ (std) $\rightarrow 19 \text{ MeV} (P_{cut})$; $\delta \Gamma_W \sim 32 \text{ MeV}$ CERN EP SeminarW mass and width @ OPALF Spanò

CERN EP Seminar

W mass and width @ OPAL

W-mass extraction in $W \rightarrow I_V$

- M_{W-}sensitive variables:
 - Tranverse mass $M_T = \sqrt{(2 p_T^{-1} p_T^{-\nu}(1 \cos\theta))}$ (mostly used)
 - Transverse lepton momentum \textbf{p}_{T}
 - Transverse missing energy
- Use maximum likelihood fit to data. Likelihood built from templates with

CDF's most precise W mass measurement

http://arxiv.org/abs/1203.0275

2.2 / fb

 Template fits to 6 distrib, combine with belt linear estimator including correl (70% between m_T and p_T, ~30% between p_T^{neu} p_T^{lep})

Distribution	W-boson mass (MeV)	$\chi^2/{ m dof}$
$m_T(e, u)$	$80~408 \pm 19_{\rm stat} \pm 18_{\rm syst}$	52/48
$p_T^\ell(e)$	$80~393 \pm 21_{\rm stat} \pm 19_{\rm syst}$	60/62
$p_T^{ u}(e)$	$80~431 \pm 25_{\rm stat} \pm 22_{\rm syst}$	71/62
$m_T(\mu, u)$	$80~379 \pm 16_{\rm stat} \pm 16_{\rm syst}$	58/48
$p_T^\ell(\mu)$	$80~348 \pm 18_{\rm stat} \pm 18_{\rm syst}$	54/62
$p_T^ u(\mu)$	$80~406\pm22_{\rm stat}\pm20_{\rm syst}$	79/62

Source	Uncertainty (MeV)
Lepton energy scale and resolution	7
Recoil energy scale and resolution	6
Lepton removal	2
Backgrounds	3
$p_T(W)$ model	5
Parton distributions	10
QED radiation	4
W-boson statistics	12
Total	19

TABLE II: Uncertainties for the final combined result on M_W .

fracesco.spano@cern.ch

W mass and width @ OPAL: the journey

PilcherFest 22 20200 Sept, The University of Chicago

RHUL Particle Physics Seminar - 2n May 2012

Event reconstruction in qqqq channel (cont)

Assign jets to Ws with different algorithms

- Reweighting and Breit Wigner: choose one assignment with
 - CC03 matrix element and multivariate discriminant (RW)
 - Kinematic fit probability for 4j , multivariate discriminant for 5j (BW)
- Convolution : use all assignment. Neural Network to give weight to each assignment

